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One non-destructive way to probe the caloric content of food is to examine the transmis-
sion spectra of low energy microwaves over a broad band (approximately 1–8 GHz). This
paper proposes a simple, but generalizable, nearest neighbor scheme to estimate the
calories of homogeneous mixtures of oil, sugar, and water. The approach’s performance
is empirically quantified and is also compared to the performance of an oracle estimator.
We report that for this study the estimator achieves an average absolute error of approx-
imately 10%. A heuristic extension of the nearest neighbor estimator is also discussed that
can in some cases improve the average error performance. The work represents the first
steps toward accurate and reliable calorie estimation techniques for complex, non-
homogeneous foods of varying shapes and amounts.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we explore the problem of estimating the
total caloric content of simple water-based mixtures using
microwave spectroscopy. The overall approach is based on
a simple, yet profound observation that the calories within
most common foods can be well approximated by only
knowing the item’s mass and the fractions of water and
fat comprising it. The observation, reported by Webster
and Neculaes [1] (see also Neculaes et al. [2]), comes from
a simple linear regression of more than 6500 foods listed in
the United States Drug Administration (USDA) National
Nutrient Database [3]. Specifically, the total calories c in
a food item can be approximated by

c � 8:89pf þ 3:79ð1� pw � pf Þ
� �

w; ð1Þ

where pf and pw denote the fraction of fat and water within
the item, w denotes its weight/mass in grams, and the
numerical constants have units of calories per gram (C/g).
This expression says that, with the exception of fat, all
basic food constituents (complex carbohydrates, protein,
and simple sugars) have essentially the same caloric
density; fat, on the other hand, has over twice as many
calories per gram.1 Thus (1) reduces the problem of calorie
estimation to the problem of estimating the water and fat
content of a food item. (We assume the weight/mass of a
food item can be readily measured.)

Here we propose and analyze a nearest neighbor
estimator that estimates the constituent percentages of
simple oil–water–sugar mixtures and thus, via (1), yields
calorie estimates. The approach is based on creating a dic-
tionary of representative microwave transmission spectra
and defining an appropriate distance metric that maps a
test spectrum to the dictionary element that best repre-
sents it (see Section 3 for details). For the class of mixtures
studied, the estimator achieves average errors of 2.2%, 2.5%,
2.8% for oil, sugar, water respectively and 10.2% for calories.
These results are on par with other estimators proposed in
the literature for similar experiments [4–6] and are roughly
ories.
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within one percentage point of the performance of an ora-
cle estimator for the constituent estimates and three per-
centage points for calories. This indicates that while some
improvement may be gained by considering different dis-
tance metrics than the one proposed here, more sophisti-
cated estimation methods will be necessary to improve
average errors below approximately 1.4% for constituents
and 7% for calories. However, for applications that can tol-
erate these levels of errors, the nearest neighbor estimator
offers conceptual and computational simplicity.

1.1. Motivation

With the increasing prevalence of obesity worldwide
and the growing associated costs (estimated to be $147 bil-
lion USD in the US alone in 2008 [7]), a device that could
reliably measure the calories in foods would presumably
help individuals track caloric intake and help them main-
tain a healthy weight. Currently there are several commer-
cial offerings able to monitor burned calories [8–10], but
there are few, if any, precise and easy-to-use devices that
measure caloric content of non-homogeneous foods (e.g.
sandwiches and kebabs). Current optical devices (including
near infrared) can yield accurate calorie counts of homoge-
neous foods [11], but because they only probe the food’s
surface, calorie estimation of non-homogeneous foods is
problematic. Caloric intake can be tracked manually using
publicly available nutritional information, but this approach
is often tedious and error prone. The microwave spectro-
scopic approach presented here has the potential to over-
come these problems and aims to fill this societal need.

1.2. Related work

In microwave spectroscopy, materials are delineated by
differences in their complex permittivity. It is natural then
to use the permittivity either directly or indirectly to infer
information about a material’s constituents. For example,
Daschner et al. [6] estimate moisture content by perform-
ing a principal component regression over the measured
dielectric spectra, i.e., over the real component of permit-
tivity; Gibbs et al. [4] use time-domain features related
to the received signal’s delay, attenuation, and dispersion
which are all characteristics related to complex permittiv-
ity; and Jean [12] leverages specific spectral characteristics
to estimate the constituents of process materials. In con-
trast to these approaches which operate on a relatively
small number of features (�10), the nearest neighbor esti-
mator can be thought of as an estimator that uses a much
larger set of features (�1000) because it operates on an
entire measured spectrum. Alternatively, it can be thought
of as an estimator only operating on a single object where
the spectrum is thought of as being a signature of the food
item and the goal is to search among a dictionary of signa-
tures to find the best match.
Fig. 1. Experimental setup.
2. Experimental data

Fig. 1 depicts the experimental setup. We used an Agi-
lent vector network analyzer with two identical Cobham
spiral antennas to measure the transmission response of
the mixtures (the top antenna being the transmitter and
the bottom being the receiver). Each antenna has an effec-
tive bandwidth of 1.8–18 GHz and each has low dispersion
characteristics. The analyzer was calibrated from 0.9 GHz
to its maximum frequency of 8.5 GHz, and all measure-
ments were referenced to the response of an empty beaker.
For each experiment the analyzer swept through a uniform
set of frequencies and recorded the received spectrum.

The mixtures were contained in a cylindrical beaker
with a height and diameter equaling 75 cm and 150 cm,
respectively. In order to minimize the effects of multipath
and ensure that most of the transmitted energy passed
through the sample, we chose a beaker that has a diameter
three times larger than the largest dimension of the spiral
antenna. The beaker contained homogeneous mixtures of
distilled water, soybean oil (Fisher Scientific catalog num-
ber S25622), and a sucrose solution. The sugar/sucrose was
purchased from a grocery store and solubilized as a 50% by
weight solution of sugar and distilled water. The resulting
syrup when added to the mixtures was considered to be
50% water and 50% sugar.

In total, the responses of 64 mixtures were recorded.
The first 49 were considered dictionary elements and were
created by combining different concentrations of oil and
sugar by weight in 5% increments up to a maximum con-
centration of 30%. Fig. 2 graphically illustrates the different
percentages. The remaining 15 samples were mixtures
whose constituent percentages were randomly chosen
within the same range as the dictionary samples (see
Table 1). These mixtures were used to quantify the perfor-
mance of the proposed estimator. Both the temperature
and the volume of the mixtures were kept constant.

The peaks in the spectra and their general shape are
controlled in large part by the frequency response of the
system antennas and by the geometry of the measurement
setup (see Fig. 3 for three prototypical spectral responses).
The changing complex electrical permittivity of the sam-
ples modulates the spectral shape according to the fre-
quency dependent attenuation for the mixtures and by
an effective lens action on the wave front that is produced
by delay and dispersion as the wave propagates through
the material under test and its glass beaker container.
The soybean oil is a fairly low loss, non-dispersive propa-
gation medium over the frequency range used for the
experiment. The complex permittivity of pure water exhib-
its a Debye frequency response that represents an increase
in attenuation or loss factor with increasing frequency, up
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Fig. 2. The ðx; yÞ coordinates of the dots equal the various oil and sugar
percentages in the dictionary mixtures. The coordinates of the points
marked with an ‘x’ are the oil and sugar percentages in the test mixtures.

Table 1
Test samples.

Test sample Oil (%) Sugar (%)

a 23.81 0.00
b 10.84 5.42
c 4.98 31.67
d 0.00 17.00
e 17.00 0.00
f 28.00 7.00
g 7.00 7.00
h 18.30 18.30
i 22.00 7.00
j 7.00 28.00
k 26.00 26.00
l 23.00 30.00
m 22.00 22.00
n 12.00 30.00
o 14.00 19.00

Fig. 3. Prototypical magnitude spectra for the experiments. Since oil is a
low loss material, adding it to water lessens the attenuation across all
frequencies (compare the response of mixture 1 to mixture 7). Adding
sugar, increases attenuation as the conductivity of the mixture increases.
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to the molecular relaxation frequency that occurs in the
range of 18 GHz, depending on temperature. Any conduc-
tivity caused by ionic impurities in the water cause atten-
uation to increase with decreasing frequency. The sugar,
which was dissolved in the water, lowers the real part of
the complex permittivity of the mixture and increases its
conductivity on a volumetric basis. There are no interfacial
effects for the three-component mixtures. Oil–water emul-
sions can exhibit such effects, but no agents were added to
cause the water and oil to emulsify. The oil, sugar, and
water were mechanically mixed to create a roughly homo-
geneous distribution such that the effective permittivity of
the mixtures varied according to the percent volume of the
constituents.

As the results in Section 3 show, the different complex
permittivities of the mixtures and the effects they have
on the spectral responses are sufficient to mathematically
distinguish one response from another. This fact is the
basis for the nearest neighbor estimator.
3. Calorie estimation

In this section, we first introduce the notion of an oracle
estimator whose performance serves as a benchmark for
the nearest neighbor estimator. We then define and empir-
ically quantify the performance of the proposed nearest
neighbor estimator. We also present an extension to the
estimator that leverages the known weight (mass) of a test
sample.
3.1. Oracle estimates

An oracle estimate is a type of nearest neighbor esti-
mate where one assumes that the constituent percentages
of the test samples are known. This is clearly an unrealistic
scenario, but oracle estimators are useful because their
performance bounds the performance of realistic estima-
tors. Let po; ps, and pw denote the fraction of oil, sugar,
and water, respectively, in a given test sample and let
pðjÞo ; p

ðjÞ
s , and pðjÞw denote the same fractions in dictionary

sample j. We define an oracle estimate as the dictionary
Water (%) Weight (g) Calories (C)

76.19 835.50 1758.53
83.74 832.40 972.02
63.35 925.90 1542.36
83.00 897.90 590.73
83.00 814.80 1224.48
65.00 817.50 2244.94
86.00 855.00 760.69
63.40 857.50 1994.48
71.00 809.70 1794.05
65.00 915.40 1558.38
48.00 891.80 2947.04
47.00 899.50 2873.18
56.00 866.30 2422.35
58.00 907.10 2015.39
67.00 878.90 1733.98



Table 2
Oracle estimates.

Test
samples

Oracle
index

Oracle oil
(%)

Oracle sugar
(%)

Oracle water
(%)

Oracle calories
(C)

Oil error
(%)

Sugar error
(%)

Water error
(%)

Calories error
(%)

a 6 25.00 0.00 75.00 1856.90 �1.19 0.00 1.19 �5.59
b 10 10.00 5.00 85.00 897.74 0.84 0.42 �1.26 7.64
c 44 5.00 30.00 65.00 1464.31 �0.02 1.67 �1.65 5.06
d 22 0.00 15.00 85.00 510.46 0.00 2.00 �2.00 13.59
e 4 15.00 0.00 85.00 1086.54 2.00 0.00 �2.00 11.27
f 14 30.00 5.00 65.00 2335.19 �2.00 2.00 0.00 �4.02
g 16 5.00 10.00 85.00 704.09 2.00 �3.00 1.00 7.44
h 26 20.00 15.00 65.00 2012.12 �1.70 3.30 �1.60 �0.88
i 13 25.00 5.00 70.00 1953.00 �3.00 2.00 1.00 �8.86
j 44 5.00 30.00 65.00 1447.71 2.00 �2.00 0.00 7.10
k 41 25.00 25.00 50.00 2827.01 1.00 1.00 �2.00 4.07
l 48 25.00 30.00 45.00 3021.87 �2.00 0.00 2.00 �5.18
m 34 25.00 20.00 55.00 2582.01 �3.00 2.00 1.00 �6.59
n 45 10.00 30.00 60.00 1837.78 2.00 0.00 �2.00 8.81
o 32 15.00 20.00 65.00 1838.22 �1.00 �1.00 2.00 �6.01
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Fig. 4. Oracle performance. Left panel: Like Fig. 2 the dots represent the
dictionary samples and the ‘x’s represent the test samples. The lines
connect the test samples to their oracle estimate. Right panel: Plot of the
oracle estimated calories versus the actual calories for the test samples.
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Fig. 5. Cubic spline approximation (thick smooth curve) overlaid on a
dictionary spectrum.
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sample that best matches the test sample in terms of its
constituent percentages,

j� :¼ arg min
j2f1;...;49g

jjpj � pjj ð2Þ

where p ¼ ½po; ps; pw�
T ; pj ¼ ½p

ðjÞ
o ; p

ðjÞ
s ; p

ðjÞ
w �

T
; jj � jj denotes the

‘2 norm of a vector, and j� is the index denoting an oracle
estimate (T denotes transpose). The corresponding oracle
calorie estimate is

c� :¼ ð8:89p�o þ 3:79p�sÞw; ð3Þ

where w denotes the weight or mass of the test sample and
p�o is shorthand notation for pðj

�Þ
o (likewise for p�s). Table 2

and Fig. 4 capture the performance results of the oracle
estimator. Note in interpreting Table 2 we conclude that
the constituent percentage errors of any nearest neighbor
estimator is bounded below by approximately 3%.

3.2. Nearest neighbor estimates

Nearest neighbor estimates are found by searching
among the dictionary elements for the best matches to



Fig. 6. The left panel shows the spline approximation of two dictionary spectra and one test spectrum. Dictionary element 32 is indeed the oracle estimate
of test sample ‘o’, but 32 is further away (in the ‘2 sense) than dictionary element 42. Thus for the nearest neighbor estimate to decode properly the norm of
the error of the spectra’s derivatives need to be taken into account. The right panel illustrates the point and shows that the distance between the derivatives
of dictionary element 32 and test sample ‘o’ is smaller than that of dictionary element 42.

Table 3
Nearest neighbor estimates.

Test
samples

NN
index

NN oil
(%)

NN sugar
(%)

NN water
(%)

NN calories
(C)

Oil error
(%)

Sugar error
(%)

Water error
(%)

Calories error
(%)

a 12 20.00 5.00 75.00 1643.85 3.81 �5.00 1.19 6.52
b 10 10.00 5.00 85.00 897.74 0.84 0.42 �1.26 7.64
c 44 5.00 30.00 65.00 1464.31 �0.02 1.67 �1.65 5.06
d 29 0.00 20.00 80.00 680.61 0.00 �3.00 3.00 �15.22
e 4 15.00 0.00 85.00 1086.54 2.00 0.00 �2.00 11.27
f 27 25.00 15.00 60.00 2281.64 3.00 �8.00 5.00 �1.64
g 9 5.00 5.00 90.00 542.07 2.00 2.00 �4.00 28.74
h 32 15.00 20.00 65.00 1793.46 3.30 �1.70 �1.60 10.08
i 26 20.00 15.00 65.00 1899.96 2.00 �8.00 6.00 �5.90
j 37 5.00 25.00 70.00 1274.24 2.00 3.00 �5.00 18.23
k 42 30.00 25.00 45.00 3223.41 �4.00 1.00 3.00 �9.38
l 47 20.00 30.00 50.00 2622.04 3.00 0.00 �3.00 8.74
m 34 25.00 20.00 55.00 2582.01 �3.00 2.00 1.00 �6.59
n 46 15.00 30.00 55.00 2240.99 �3.00 0.00 3.00 �11.19
o 32 15.00 20.00 65.00 1838.22 �1.00 �1.00 2.00 �6.01
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the test samples. But instead of directly comparing magni-
tude spectra, we first approximate them. In particular, each
magnitude spectrum is approximated by a cubic spline
(piecewise polynomial) where the polynomial coefficients
in each segment are chosen to minimize the squared error
between the approximation and the original spectrum
[13,14]. The frequency points defining the endpoints of
the different piecewise segments (i.e. the knot sequence)
are taken to be elements of a uniform sub-sequence of
the frequencies at which the data were originally collected.
The purpose of taking spline approximations is to obtain
smooth representations of the spectra that preserve the
curves’ overall shape. Fig. 5 shows an example of one such
approximation.

Let rj 2 Rn;n ¼ 1400, denote the cubic spline approxi-
mation of the jth dictionary spectra (j ¼ 1; . . . ;49) and let
s 2 Rn denote the spline approximation of one of the test
spectra. A natural way to quantify the distances between
frjg and s is to compute the ‘2 norm of the error between
s and all of the dictionary elements,

jjrj � sjj ¼
Xn

k¼1

rjðkÞ � sðkÞ
�� ��2 !1=2

; j ¼ 1; . . . ;49; ð4Þ
where smaller error indicates higher similarity. However,
empirical experiments suggest that this measure does
not yield very accurate nearest neighbor estimates. Thus
we augment (4) by considering the spectra’s difference sig-
nals. Let Drj and Ds denote the difference signals of rj and s,
DrjðkÞ ¼ rjðkþ 1Þ � rjðkÞ; k ¼ 1; . . . ;n� 1 ð5Þ
DsðkÞ ¼ sðkþ 1Þ � sðkÞ; k ¼ 1; . . . ;n� 1: ð6Þ

These difference signals are the first order finite differ-
ence approximation to the derivative of the spectra as a
function of frequency [15–17]. Hence the norm of the error
jjDrj � Dsjj is a measure of similarity between a test spec-
trum’s derivative and the derivatives of the dictionary
spectra. Comparing derivatives allows one to compare
the general shape of the spectra even if two spectra signif-
icantly differ in magnitude. To understand this statement,
consider the example in Fig. 6. The plot in this figure shows
a test spectrum and two dictionary spectra. The dictionary
element that is most similar in shape to the test spectrum
(dictionary sample 32) is the oracle estimate and thus is



Fig. 7. Nearest neighbor performance. Left panel: Dots represent the
dictionary samples and the ‘x’s represent the test samples. The lines
connect the test samples to their nearest neighbor estimate (marked as
squares). Right panel: Plot of the estimated calories versus the actual
calories for the test samples.

2 This is true provided the test sample does not lie on a line of equi-
weight.
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the spectrum we want to choose as the test sample’s
nearest neighbor; however, the other dictionary spectrum
(dictionary element 42) has a smaller ‘2 error, i.e.,

jjr42 � sjj < jjr32 � sjj: ð7Þ

The right hand panel in Fig. 6 shows the difference sig-
nals of the same three spectra. Note that in this plot the
difference signal of the oracle estimate more closely
matches the test signal as compared to the other dictionary
signal. This example demonstrates a limitation of using the
norm of the spectral error alone to compute a nearest
neighbor estimate and motivates the use of a nearest
neighbor estimate of the form

arg min
j
jjrj � sjj þ jjDrj � Dsjj; ð8Þ
where the minimizer would be the index of the dictionary
spectrum deemed to be the nearest neighbor of s. To apply
this rule, however, the two terms in (8) need to be normal-
ized such that their contributions are equally weighted.

Letting

�F ¼min
j
jjrj � sjj bF ¼max

j
jjrj � sjj

�G ¼min
j
jjDrj � Dsjj bG ¼ max

j
jjDrj � Dsjj;

we normalize the norms to the unit interval

lj ¼
jjrj � sjj � �FbF � �F

ð9Þ

mj ¼
jjDrj � Dsjj � �GbG � �G

: ð10Þ

The proposed nearest neighbor rule is then

j� :¼ arg min
j2f1;...;49g

lj þ mj: ð11Þ

The constituent fractions of the optimal spectrum rj� are
the nearest neighbor estimates, denoted by pðj

�Þ
o ¼ p�o; p

ðj�Þ
s

¼ p�s , and pðj
�Þ

w ¼ p�w for oil, sugar, and water respectively.
The nearest neighbor calorie estimate is computed as

c� :¼ ð8:89p�o þ 3:79p�s Þw: ð12Þ

Table 3 contains the results of applying this estimator to
the 15 test samples. Fig. 7 graphically shows the pairing
between the test samples and their nearest neighbor. The
average absolute error for the calorie estimates is 10.15%
with the minimum and maximum absolute errors being
1.64% and 28.74%. The sample mean and variance are
0.027 and 0.015.

Note that the oracle constituent errors listed in Table 2
do indeed lower bound the nearest neighbor constituent
errors. However, the same is not true for the oracle calorie
estimates. Because (1) is a many-to-one mapping there are
times when the error of a nearest neighbor calorie estimate
is smaller than the error of an oracle estimate. For example,
this happens with test sample ‘f’.

3.3. Leveraging measured weight

There is no reason to expect that the weight of the
dictionary samples, or rather the weight of any potential
nearest neighbor estimate, should be the same as the mea-
sured weight of a test sample. But because all the mixtures
in these particular experiments had constant volume, a
weight difference between a test sample and its nearest
neighbor estimate directly implies a difference among
the true constituent percentages and the nearest neighbor
constituent percentages.2 Thus this weight difference pro-
vides additional information that can be used to calculate
a new calorie estimate from the nearest neighbor estimate.
In this section, we propose a heuristic extrapolation scheme
based on this potential weight difference.



Table 4
Estimates leveraging measured weights.

Test
samples

Extrapolated
oil (%)

Extrapolated
sugar (%)

Extrapolated
water (%)

Extrapolated
calories (C)

Oil error
(%)

Sugar error
(%)

Water error
(%)

Calories
error (%)

a 19.18 4.59 76.23 1569.89 4.63 �4.59 �0.04 10.73
b 9.22 4.68 86.10 829.84 1.62 0.74 �2.36 14.63
c 6.18 30.00 63.82 1561.48 �1.20 1.68 �0.47 �1.24
d 0.00 19.92 80.08 677.88 0.00 �2.92 2.92 �14.75
e 16.44 0.00 83.56 1190.82 0.56 0.00 �0.56 2.75
f 23.24 14.42 62.34 2135.71 4.76 �7.42 2.66 4.87
g 6.43 5.55 88.02 668.62 0.57 1.45 �2.02 12.10
h 14.59 19.93 65.49 1759.71 3.71 �1.63 �2.09 11.77
i 16.27 13.89 69.83 1597.81 5.73 �6.89 1.17 10.94
j 6.83 25.14 68.03 1427.76 0.17 2.86 �3.03 8.38
k 28.63 24.83 46.53 3109.38 �2.63 1.17 1.47 �5.51
l 19.74 30.00 50.26 2601.57 3.26 �0.00 �3.26 9.45
m 25.81 20.18 54.01 2650.42 �3.81 1.82 1.99 �9.42
n 14.61 30.00 55.39 2209.17 �2.61 �0.00 2.61 �9.61
o 15.94 20.17 63.89 1917.33 �1.94 �1.17 3.11 �10.57
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Fig. 8. Extrapolation performance. Left panel: Dots represent the dictio-
nary samples and the ‘x’s represent the test samples. The lines connect
the test samples to their nearest neighbor extrapolated estimate (marked
as diamonds). Right panel: Plot of the estimated calories versus the actual
calories for the test samples.
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Let d ¼ w�w� denote the difference of the weight of
the test sample and the weight of the nearest neighbor
estimate. The proposed scheme apportions a particular
fixed fraction of d to the constituent weights of the nearest
neighbor estimate such that the extrapolated weight
equals the test sample’s measured weight. Mathematically,
this adjustment is expressed as

w[
o :¼ w�p�o þ 8:89=12:68ð Þd ð13Þ

w[
s :¼ w�p�s þ 3:79=12:68ð Þd ð14Þ

for w[
o > 0 and w[

s > 0 where w[
o;w

[
s represent the

extrapolated oil and sugar weight in the test sample,
p�o and p�s denote, respectively, the fraction of oil and
sugar for the nearest neighbor estimate, and w� denotes
the nearest neighbor estimate’s weight. The fractions
8:89=12:68 and 3:79=12:68 are the ratios of the caloric
densities. The extrapolated calorie estimate c[ is then
computed as,

c[ :¼ 8:89w[
o þ 3:79w[

s: ð15Þ

Note that if d ¼ 0; c[ equals the nearest neighbor esti-
mate. Also note that when this scheme is implemented
care must be taken to ensure the boundary conditions
are satisfied, i.e., ensure that the method does not produce
negative (non-physical) weights.

Because the weight difference does not provide any
information as to how the constituent proportions
should be changed, there is no guarantee that this scheme
reduces the calorie error. The extrapolation works best
when the weight difference is caused by differences in
the percentages of oil and gas and not in the percentage
of water.

Like the nearest neighbor results, Table 4 and Fig. 8 con-
tain the results of this extrapolation procedure for the test
samples. The average absolute error for the calorie esti-
mates is 9.11% with the minimum and maximum absolute
errors being 1.24% and 14.75%, respectively. The sample
variance of the calorie errors is 0.010 which is a 33%
decrease than the nearest neighbor estimates. However,
because of the heuristic nature of the scheme, there are
instances where performance worsens. For example, for
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test sample ‘a’ the calorie error increased from 6.52% to
10.73%. On the other hand, the maximum nearest neighbor
error of 28.74% for test sample ‘g’ reduced to 12.10%. In this
case, both the sugar and oil concentrations moved closer to
the true constituent percentages consequently reducing
the error.

4. Conclusion

While the results reported here are only for simple mix-
tures of oil, sugar, and water, the approach of estimating
calories by finding nearest neighbor estimates from within
a set of dictionary elements generalizes to more compli-
cated food items. In particular, the definition of the nearest
neighbor estimator in (11) remains applicable as the con-
stituent list grows larger, and it can be easily tailored to
take advantage of different spectral aspects (e.g., different
regularization terms can be added). The efficacy of the
approach for more complicated foods is still however an
open question.

In some sense, it is remarkable that a nearest neighbor
approach worked as well as it did because the spectra are
high dimensional objects (n ¼ 1400), and for such spaces,
it is typically difficult to create dictionaries large enough
that guarantee sufficient performance.3 The fact that the
proposed estimator worked reasonably well suggests that
the spectra lie in a very small subspace in Rn that can be
well-represented by a small dictionary. An important ques-
tion moving forward is how large does this subspace
become when more complicated foods are considered. If
it becomes too large, nearest neighbor estimators will no
longer be practical; if on the other hand the subspace
remains small, nearest neighbor estimators offer a simple
solution.

The nearest neighbor methodology also informs more
sophisticated machine learning [18,19] and neural net-
work approaches [20] in their application to calorie esti-
mation. For both approaches, features are first extracted
from the data of interest (in this case the transmission
spectra) and they are in turn used to train a classifier or
an estimator. Performance thus depends on the chosen
set of features. When considering more complicated food
items, and even for simple mixtures, it is unclear a priori
which set of features should be used and what number of
features is sufficient to achieve a target performance. The
results reported here directly suggest two features (the
norm of the spectra error and the norm of the difference
signals) and indirectly suggest features related to the
shape of a spectrum (e.g., slopes and curvatures) as candi-
date features for more complicated food items. The results
also suggest that with only these two features machine
learning and neural network techniques should be able
to achieve a 10% (or better) average error for simple
mixtures.
3 To maintain a fixed distance among dictionary elements, the required
number of elements grows exponentially in n.
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